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1. Introduction

The study of diffusion in the phase space of non-integrable Hamiltonian systems

is a very difficult problem due to the extreme sensitive dependence of the orbit

evolution on the initial conditions. The phenomenon of Arnold diffusion1 is generic

in Hamiltonian systems with two or more degrees of freedom, but its relevance

in the applications is still debated. Indeed, any real macroscopic physical system

cannot realise the symplectic deterministic character of the dynamics at arbitrary

small scales due to the unavoidable presence of external random perturbations that

destroy the time-coherence in the orbits’ evolution. Nevertheless some results of

perturbation theory turn out to be robust with respect to perturbations of the sys-

tem under consideration and they can provide effective laws in the study of the

stability problem. Nekhoroshev’s theorem2 is among these results and the corre-

sponding estimate for the orbit stability time has been applied in many fields, from

celestial mechanics to accelerator physics. In this paper, we focus on the problem

of dynamic aperture estimate in beam dynamics. The dynamic aperture (DA) is

the amplitude of the phase space region where stable motion occurs. It is one of the

key quantities for the design of modern colliders based on superconducting mag-

nets, such as Tevatron3–5, HERA6–9, RHIC10, the Superconducting Super Collider
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(SSC)11,12, and LHC (see e.g., Ref.13 for a detailed overview).

The concept of stable motion needs a proper definition of the time frame. In

a mathematical sense, stable motion implies bounded motion for arbitrary time.

In a physical context, particle stability can be linked to a maximum number of

turns Nmax for which bounded motion occurs, where Nmax is set on the basis of the

specific application under consideration. If an ensemble of initial conditions defined

on a polar grid (x = r cos θ , y = r sin θ 0 ≤ θ ≤ π/2, where x, y are expressed in

units σx, σy of the beam dimension) is tracked for up to Nmax turns to assess their

stability, then the DA can be defined as14:

D(N) =
2

π

∫ π/2

0

r(θ;N) d θ ≡ 〈r(θ;N)〉 . (1)

where r(θ;N) stands for the last stable amplitude (disregarding any stable domain

disconnected from the origin) for up to N turns in the direction θ. In this way,

dynamic aperture can be considered a function of time, with an asymptotic value

representing the region of stability for arbitrary time.

An accurate numerical computation of DA, as well as a good estimate of the er-

ror associated with the protocol used in the numerical simulations, is of paramount

importance to ensure the reliability of DA as a figure-of-merit for assessing syn-

chrotron performance. A general discussion of the DA definition, its computation,

and accuracy can be found, e.g., in Ref.14. Computation consists of simulating

the evolution of a large number of initial conditions, distributed to provide good

coverage of the phase space under study, probing whether motion remains bounded

over the time interval selected for the simulations.

Given the CPU-intense character of these simulations, studies have explored

models to fit, and eventually extrapolate, the dependence of the DA on the number

of turns15,16 have been looked for. The rationale is that long-term behaviour of

the DA, a computationally heavy task, can be extrapolated using knowledge from

numerical simulations performed over a smaller number of turns. Potentially, a

large number of initial conditions can be used to improve the accuracy of numerical

simulations. Increasing the number of initial conditions has no drawbacks in terms

of CPU-time needed, as parallelisation over the initial conditions can be easily

performed17. Additionally, a more efficient estimate of the long-term behaviour of

the DA would expedite analysis of several configurations of the circular accelerator,

which is sometimes obligatory to gain insight in the deeper nature of the beam

dynamics.

The answer to the quest for a model for the time-evolution of DA was pro-

vided by two fundamental results of the theory of dynamical systems, namely the

Kolmogorov-Arnold-Moser (KAM)18 and the Nekhoroshev2 theorems. According

to the results of Refs.15,16, the following scaling law holds

D(N) = D∞ +
b

(logN)
κ , (2)
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where D∞ represents the asymptotic value of the amplitude of the stability domain.

b and κ are additional parameters.

The model (2) is compatible with the hypothesis that the phase space is parti-

tioned into two regions: a central core, with r < D∞, where KAM18 surfaces bound

the motion, thus producing a stable behaviour apart from a set of small measure

where Arnold diffusion can take place; and an outer part, with r > D∞, where the

escape rate to infinity is given by a Nekhoroshev-like estimate2,19,20

N(r) = N0 exp

[(r∗
r

)1/κ]
(3)

where N(r) is the number of turns that are estimated to be stable for particles

with initial amplitude smaller than r. Experience with the analysis of data from

numerical simulations of various configurations of the LHC16 and from experimental

data from the Tevatron21 showed that the fit parameters b, κ,D∞ can assume signs

that go beyond that predicted by strictly applying the model based on Nekhoroshev

theorem. At this point, the scaling law for DA has been used to propose a model

for the evolution of beam intensity in a hadron synchrotron21, which is the basis of

the novel experimental method proposed in this article to measure DA. If the beam

distribution is Gaussian in x and y

ρG(x, y) =
1

2π σx σy
e
−
(

x2

2 σ2x
+ y2

2 σ2y

)
(4)

then after transforming to polar co-ordinates and applying (1), i.e., assuming that

particles with amplitude beyond D(N) at turn N are lost, then the evolution of

beam intensity Nb can be found as

Nb(t)

Nb(1)
= 1−

∫ +∞

D(t)

e−
r2

2 r dr = 1− e−
D2(N)

2 , (5)

where D(N) −−−→
N→1

+∞, and D(N) is assumed to be expressed in units of sigma.

Equation (5) is the basis for establishing a direct link between DA and beam lifetime

in a synchrotron.

In this paper an alternative approach is explored, based on the possibility to

describe the beam dynamics by means of a Hamiltonian system under the influence

of stochastic perturbations. The goal is to build a diffusion equation whose solution

represents the evolution of the beam distribution, possibly including also boundary

conditions, such as absorbing boundaries. Such an approach features a number of

interesting aspects, in particular that of providing a natural description of the beam

dynamics in the presence of a collimation system, which is a typical situation in

most of modern colliders based on superconducting magnets. The ultimate goal is

to set up a general framework to justify the approach based on a diffusive equation

as well as to provide observables the can be compared with what is observed in

beam experiments.
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In fact, in recent years, with the advent of the LHC and the approval of its

high-luminosity upgrade22 the topic of measuring with beam the DA has regained

interest, after a break between the design phase of the LHC (see, e.g., Refs.23–25

and Ref.26 for a review of the comparison between measurements and simulations),

and its commissioning and following operation periods. Indeed, some experimental

sessions have been performed in the LHC and two methods have been used to

probe the extent of the DA (see Refs.27–30) and in this paper the main results from

Refs.28,29 are reviewed in light of the new proposed approach.

The plan of the paper is the following: in section 2 the theory of diffusion

processes in stochastically perturbed Hamiltonian system is reviewed, while in sec-

tion 3 the main observable is derived for later use. In section 4 the experimental

technique is described and in section 5 the comparison between the approach based

on the diffusion equation and the experimental results is carried out. Finally, some

conclusions are drawn in section 6.

2. Diffusion in Hamiltonian Systems

Quasi-integrable Hamiltonian systems are characterized by the existence of a set

of invariant tori (the so-called KAM tori18) of large measure. Moreover, for multi-

dimensional systems, transport in phase space occurs only over a set of initial con-

ditions of extremely small measure, through the topological mechanism of Arnold’s

diffusion1. In any event, the timescale of finite transport phenomena can be ex-

tremely long.

In the case of a system described by a symplectic polynomial map with an

elliptic fixed point at the origin, the KAM invariant tori exist in a neighbourhood

of the fixed point, but their measure decreases as the distance from the fixed point

increases, and a weakly-chaotic region takes the place of the broken tori. Indeed,

for a given time T , it is possible to identify a neighbourhood of the origin U(T ) such

that all orbits whose initial conditions belong to U(T ) are bounded for all times

t ≤ T .

The concept of DA defines the region where KAM theory applies, and the mea-

sure of the set of chaotic orbits is negligible so that Arnold’s diffusion is the only

effective transport mechanism. Beyond the DA one expects the appearance of a

large, weakly-chaotic region, likely generated by the overlap of several non-linear

resonances, where the orbits can be trapped for a long, but not extremely long,

time before a fast escape to infinity occurs.

The amplitude of the chaotic region depends on the non-linear terms in the map

and, according to perturbation theory, the action variables are almost conserved in

this region, whereas the angle variables follow a dynamics governed by stochastic

fluctuations over a characteristic timescale. In the chaotic region, the diffusive

behaviour can be extremely complex, due to the underlying geometrical structures

associated with the Hamiltonian character of phase space31.

Nevertheless, in real situations, like applications to beam dynamics, the presence
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of external random perturbations cannot be avoided32, thus creating a homogeneous

region in phase space. Under these conditions, one has the possibility of describing

the orbit diffusion by means of a stochastically perturbed Hamiltonian, which has

been studied in the literature33–36. The proposed models have the form

H(θ, I, t) = H0(I) + ε ξ(t)H1(θ, I) (6)

where (θ, I) are action-angle variables and ξ(t) is a regular, stationary stochastic

noise with zero mean value and unitary variance that mimics the effect of the chaotic

dynamics. Note that in Eq. (6) the parameter ε defines the diffusion timescale

ε2t. The stochastic phase flow associated with the canonical equations has the

symplectic character due to the regularity of the noise realisations and we assume

a fast-decaying correlation function for the noise 〈ξ〉

〈ξ(t)ξ(t+ T )〉 ' γ exp(−γ|T |) (7)

where γ−1 is the correlation timescale. We recall that an exponential decaying of the

correlation time is consistent with the existence of positive Ljapounov exponents31.

Due to the sensitive dependence on the initial conditions, each realisation of

the noise simulates the evolution of a different orbit in phase space. In this frame-

work, we look for a statistical description of the evolution of a distribution function

ρ(θ, I, t) for a time of the order of the diffusion timescale, which has to be much

longer than the correlation timescale.

The perturbation term H1(θ, I) measures the effect linked with the random

noise, taking into account phase space inhomogeneities, but the fast escape to in-

finity of an orbit cannot be described by the stochastic model (6) and one has to

introduce an absorbing barrier at a given distance from the fixed point. The eval-

uation of the long-term dynamic aperture is carried out using the stochastic model

(6) with ε � 1 in terms of the action threshold Ida(t∗) for which the probability

that a particle with I0 ≤ Ida is lost at the absorbing boundary for t ≤ t∗ is less

than an a priori given small, albeit not zero value. In the limit t∗ → ∞ all the

particles will be lost unless the perturbation vanishes at a finite distance from the

origin. This would introduce another boundary condition to the stochastic model.

Perturbation theory suggests a possible estimate for the norm of H1(θ, I) based

on the asymptotic character of the perturbation series. In fact, for the case of a

symplectic polynomial map, provided there are no dominating low-order resonance

in phase space, a generic estimate of the reminder of the Birkhoff’s Normal Form

gives19

‖Rn(I)‖ ∝ (n!)η
(
I

I∗

)n/2
. (8)

The factorial term takes into account the number of contributions due to the struc-

ture of the functional equations defining the perturbation series, the exponent η

can be related to the number of degrees of freedom, whereas the parameter I∗ is

related to the strength of the non-linear terms and can define the amplitude beyond
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which fast escape to infinity occurs. For each I there exists an optimal order for

the Normal Form remainder defined by the relations

nη =

(
I

I∗

)1/2

⇒ n =

(
I∗
I

)1/2η

. (9)

By substituting the relation (9) into Eq. (8) one obtains the well-known

Nekhoroshev-like estimate

‖Ropt(I)‖ ∝ exp

[
−η
(
I∗
I

)1/2η
]

(10)

that shows how the optimal estimate scales as a function of the action I. The

existence of an optimal remainder for the perturbation series is a fingerprint of the

non-integrability of the dynamics and it could be used as a measure of the long-term

stability of the orbits.

According to this picture we assume that the Nekhoroshev’s estimate gives also

a measure of the orbits diffusion in phase space and we study the diffusion in the

stochastic models (6) assuming the estimate

‖H1(θ, I)‖ ' exp

[
−
(
I∗
I

)α]
. (11)

To derive a diffusion equation for the action variables one considers the stochastic

Liouville equation37,38 for the distribution function ρ(θ, I, t)

∂ρ

∂t
+ Ω(I)

∂ρ

∂θ
+ ε ξ(t)

[
∂H1

∂I

∂

∂θ
− ∂H1

∂θ

∂

∂I

]
ρ = 0 (12)

associated to the Hamiltonian system (6) and where Ω(I) = dH0/dI. Moreover,

one needs to perform an averaging procedure over the noise realisations and the

angle variables32,39. This approach can be justified for ε � 1 when we are able

to distinguish four timescales: the noise decorrelation timescale γ−1; the averaging

timescale T � γ−1 at which the noise ξ(t) is well approximated by a white noise; the

angle relaxation timescale ∝ ε−4/3 � T 40; the action diffusion timescale ∝ ε−2 32.

In the limit ε→ 0 and T →∞ with γ finite and ε2T � 1, it is possible to show that

the average solution of the stochastic Liouville equation (12) is well approximated

by the solution of the Fokker-Planck equation33,34

∂ρ

∂τ
=

1

2

∂

∂I

(
h2(I)

∂ρ

∂I

)
(13)

where the diffusion coefficient is computed according to

h2(I) =

〈(
∂H1

∂θ

)2
〉
θ

and τ is a slow effective time ∝ ε2
√
γ−1T t a. The condition limI→0 h(I) = 0

produces a natural boundary at I = 0 and we introduce an absorbing boundary

aAs a matter of fact τ has the dimension [t]2
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condition at I = Ia representing the position of the fast escape to infinity or that

of a collimator.

3. Estimate of losses at the absorbing barrier

According to our assumptions, Eq. (13) describes the orbit diffusion of a weakly-

chaotic Hamiltonian system if the perturbation term in (6) is proportional to the

optimal remainder of the perturbation series, which measures the non-integrability

of the system. We use a Nekhoroshev-like estimate for the stochastic perturbation

term in (6) so that the diffusion coefficient has the form

h2(I) = E2
∗ exp

[
−2

(
I∗
I

)α]
. (14)

The parameter I∗ is related to the apparent radius of convergence of the asymp-

totic perturbative series and it could be used to measure the non-linear effects, the

exponent α is usually related to the dimension of the system, and E∗ defines the

energy unit. The diffusion coefficient tends to zero exponentially fast as I∗/I → 0

so that the diffusion time of an orbit increases exponentially as we move closer to

the origin, thus defining the long-term dynamic aperture.

We are interested in the evolution of an initial distribution with an absorbing

boundary condition and, in particular, in the estimate of the current at the boundary

condition, including also the dependence on the system’s parameters. Our approach

is based on the stochastic differential equation that is associated to the Fokker-

Planck equation (13), namely

dI =
2αE2

∗
I∗

(
I∗
I

)α+1

exp

[
−2

(
I∗
I

)α]
dτ + E∗ exp

[
−
(
I∗
I

)α]
dwτ (15)

where wτ is a Wiener process in the diffusion time τ .

Using Ito stochastic calculus, the change of variable

y = −
∫ xa

x

exp

[(
1

x

)α]
dx y ∈ [−∞, 0] , (16)

where x = I/I∗ and xa = Ia/I∗, reduces Eq. (15) to the form

dy = α

(
E2
∗
I∗

)2

a(y) dτ +
E∗
I∗
dwτ (17)

with an absorbing boundary condition at y = 0 and

a(y) =

[
I∗
I(y)

]α+1

exp

[
−
(

I∗
I(y)

)α]
. (18)

We note that a(y) > 0 represents a drift field towards the boundary, which vanishes

exponentially fast when y → −∞. moreover, the drift field is exponentially small

if I � I∗. If a(y) is well approximated by a linear field in the region of interest,
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one can apply an adiabatic approximation and compute the current at the bound-

ary conditions by means of the fundamental solution of a Wiener process with an

absorbing boundary.

To this aim, it is convenient to introduce an adimensional diffusion parameter

ds ∝ (E∗/I∗)
2dτ to simplify Eq. (17). The diffusion parameter s is related to the

physical time by the following relationship

ds =

(
εE∗
I∗

)2√
Tγ−1dt . (19)

In the new variable y the Fokker-Planck equation reads

∂ρ

∂s
= −α ∂

∂y
[a(y)ρ] +

1

2

∂2ρ

∂y2
. (20)

For an initial distribution δ(y + y0) the probability current J (s|y0) lost at the

absorbing boundary reads

J (s|y0) ' y0√
2πs3/2

exp

[
− (Φ−s(y0))2

2s

]
, (21)

where Φs(y0) is the phase flow associated to the drift field a(y). We derive a scaling

law for the current (21) in the limit of null drift observing that if y0/
√
s ' 1 then the

probability current is of order O(y−20 ) for a time s ≤ y20 . Indeed, letting u = y0/
√
s

the expression (21) reads

J (s|u) ' s u exp

(
−u

2

2

)
. (22)

The Nekhoroshev’s estimate (10) for the perturbation implies

y0 ' −
C

I∗
exp

(
I∗
I0

)α
where C is a suitable constant. Then if I0 � I∗ we get an exponentially small prob-

ability current for an exponentially long time and we recover an effective definition

of dynamics aperture Ida (cfr. the scaling law (2))

Ida ∝
I∗

(ln s)1/α
(23)

where the value of the diffusion parameter s is the related to stability time according

to (19).

This result can be compared against the case of orbit diffusion with a power-law

dependence of the perturbation strength, i.e.,

h(I) ∝
(
I

I∗

)m+1

(24)

for which the previous approach gives the estimate

y0 '
1

mI∗

(
I∗
I0

)m
(25)
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so that the effective dynamic aperture is estimated to be

Ida ∝
I∗

s1/(2m)
, (26)

which shows clearly that the scaling law is very different for the two models of

diffusion coefficient.

Finally, for a generic initial distribution ρ(I), the total probability current lost

at the absorbing boundary is given by

J (s) =
1

2
√

2πs3/2

∫ Ia

0

y(I) exp

[
− (Φ−sa (I))2

2s

]
ρ(I) d I , (27)

which will be used to compare the analytical model with experimental data since

Eq. (27) is related to the total beam losses, which are proportional to 1− J (s).

4. LHC dynamics aperture experiments

Measuring DA is a true challenge and it is an important goal in itself since it allows

examination of non-linear single-particle motion.

In the method derived from Eq. (5), the beam can be blown-up gently in the

transverse directions by means of an appropriate excitation until slow losses appear.

Measurement of intensity decay with time then provides the needed information on

the DA by performing a fit to the beam losses as a function of time. The proposed

technique has been used in two experimental sessions at the LHC to probe the DA

of Beam 1 at injection energy28,29.

During the measurements, the collimation system is retracted to avoid any in-

terference, and a single bunch is injected, gently blown-up transversely, and the

intensity decay recorded. This is repeated for different values of the strength of

the octupole circuits. These are special circuits (in total eight per ring) intended

to compensate for the corresponding field error of the LHC main dipoles13. In the

experimental sessions they have been used to shrink and control the DA.

Once a sizeable intensity change is obtained, the octupoles’ strength is varied.

This is repeated for several magnetic configurations of the LHC lattice. A summary

of the experimental results is shown in Fig. 1, where the evolution of the relative

beam intensity and of the transverse rms beam size are plotted for the various

magnetic configurations analysed in this paper.

5. Analysis of the experimental intensity evolution

We have analysed the results of the LHC experimental sessions, as described in the

previous section, to probe the models proposed in this paper. The key observable

is the normalised beam intensity as a function of time, which has been compared

against the predictions of the Fokker-Planck equation (13) in the diffusion time s

and assuming an absorbing boundary condition at I = Ia.
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Fig. 1. Evolution of the relative beam intensity (upper), of the horizontal rms beam size (middle)

and of the vertical rms beam size (lower) as a function of time for the DA measurement cases

considered in this paper. The constancy of the beam size for the various cases is clearly seen

To obtain a closed-form analytic expression for the current at the boundary con-

dition, we linearise the drift field, approximating it as a constant force by expanding

a(y) (cfr. Eq. (18)) at the initial condition, namely

a(y(I0)) '
(I∗
I0

)α+1

exp
[
−
(I∗
I0

)α+1]
. (28)

Since a(I0) is an increasing function for I0 � I∗ we expect to underestimate the

current at the absorbing barrier, but the effect of the drift field (18) is nevertheless

small in the diffusion equation (20). Thus, the probability current J (s) at the

boundary can be explicitly estimated to be

J (s) =
1

2
√

2πs3/2

∫ Ia

0

y(I0) exp

[
− (I0 − a(I0)s)2

2s

]
ρ(I0) d I0 . (29)

In the experimental set-up, the initial distribution is well approximated by a Gaus-

sian function in the physical variables, whose variance is the so-called beam emit-

tance ε, which proven to be almost constant during the measurements. Since the

unperturbed action I is well approximated by the linear invariant, i.e. the emit-
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tance, we assume an initial distribution ρ(I0) of the form

ρ(I0) =
1

ε
exp (−I0/ε) . (30)

Equation (29) can be used to obtain an explicit estimate for the relative inten-

sity variation during the experiments, provided that the model’s parameters are

determined.

The position of the absorbing boundary Ia defines the action unit so that the free

parameters are α, the scaling factor β between the physical time t and the diffusion

time s, and I∗. To achieve a meaningful interpolation of the experimental data,

we decided to reduce the number of free parameters by considering measurements

referring to the same experimental set-up, i.e., with a single type of magnet being

scanned in strength. Then, we assume that the exponent α depends only on the

dimensionality and the non-linearities present in the system, hence it is kept the

same for the whole set of experimental results. The scaling factor β depends on the

ratio (ε/I∗)
2 (cfr. Eq. (19)) and we assume that this ratio remains constant since

both ε and I∗ scale proportionally to the strength of the non-linear terms. Finally,

given that ε was constant during the experiment it is possible to express Ia in terms

of ε. As a consequence the only remaining free parameter in the interpolation

procedure is I∗.

In Fig. 2 we show the results of interpolation of the experimental data using

Eq. (29) for four values of the octupole currents. The values of the interpolation

parameters are reported in Table 1 for all cases considered, using the position of the

absorbing barrier Ia as the action unit. The interpolation results suggest a quite

good agreement between the analytical approach and the experimental data in all

the cases with a negative octupole current. This is obtained by varying only I∗,

which is the estimate of the position of the fast escape to infinity. Note that α, β

and ε/Ia are the same for all cases with negative octupole currents, whereas the

best fit procedure provides a slightly varied exponent (α = 1.5 instead of α = 1.4)

in the case of a positive octupole current of 90 A.

For the case with an octupole current of −90 A, we have compared the analytical

estimate (29) with a direct integration of the Fokker-Planck equation for a much

longer time than that considered in the experiments (see Fig. 3). We note that even

after a time interval much longer than the typical elapsed time in the experiment,

the relative error between the semi-analytical solution or the numerical one is less

than 1%.

In Fig. 4 we report the relation between I∗/Ia (as derived from the interpola-

tion procedure) and the octupole current. The continuous curve represents a linear

interpolation of the data, which proves to be an excellent model of the data be-

haviour. This also confirms one of the hypothesis made in the determination of the

theoretical model, i.e., that I∗ scales with the non-linearities, which are, in turn,

linear in the octupole current.

It is worthwhile stressing that the situation for the case with positive octupole
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Fig. 2. Interpolation of the measured relative beam intensity during the LHC dynamic aperture
experiments (black dots) using the analytic expression (29) (continuous curve) for four values of

the octupole current, −45 A (upper left), −65 A (upper right), −90 A (lower left), and 90 A (lower

right.

Fig. 3. Comparison between the fits of relative beam intensity for the case with −90 A octupole
current (black dots) using the analytical estimate (29) (green curve) and the direct integration of

the Fokker-Planck equation (13) with the same parameters (blue curve).

current looks rather different from the other data sets. In fact, even if the agreement

between data and simulations is still reasonably good (see Fig. 2, lower right), the

resulting parameters are different from those of the cases with negative currents. In

particular, while the difference in terms of α is small, β is strongly reduced, meaning

that the typical diffusion time is shorter than for the other cases. It is also worth

observing that I∗/Ia for the case 90 A does not follow the same behaviour as the

other cases as it does not follow the line shown in Fig. 4. This could be explained

by considering that in the LHC ring the octupoles used in this experiment are not
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Table 1. Parameter values obtained from the interpo-
lation of the relative beam intensity.

Octupole Current I∗/Ia α β ε/Ia
[A] [104turns]

-25 2.01 1.4 2.2 0.25

-45 1.62 1.4 2.2 0.25
-65 1.46 1.4 2.2 0.25

-90 1.30 1.4 2.2 0.25
+90 1.38 1.4 0.83 0.25

-100 -80 -60 -40 -20

Octupole Current (A)

1

1.5

2

2.5

I  / I
* a

Fig. 4. Values of I∗/Ia computed by interpolating the experimental data with negative octupole

currents. The linear interpolation curve has a correlation coefficient of 0.96 with the data.

the only source of non-linearities. Hence, a sign change of their strength produces

a different effect in terms of compensation (or lack of compensation) with the other

sources of non-linear effects present in the ring, thus introducing sharp changes in

the interpolation parameters.

6. Conclusions

In this paper, we propose to estimate the long term DA in beam dynamics through

a framework based on diffusion in stochastically perturbed Hamiltonian systems.

The goal is to provide predictions that can be compared against experimental re-

sults. This was performed using experimental data from recent DA tests in the

CERN LHC at injection energy and an analytical estimate of the loss current de-

rived from a 1D Fokker-Planck equation for the action variable with an absorbing

boundary condition and a Nekhoroshev-like diffusion coefficient. The preliminary

results are encouraging, showing a good agreement between the predictions based

on the diffusive models and the experimental results.

An essential next step to be accomplished consists of assessing in a clear way

whether the form of the diffusion coefficient based on Nekhoroshev’s estimate is
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really the best choice to interpolate the experimental data. This might require

additional experimental sessions at the LHC that considers longer time series for

the beam intensity.
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13. O. Brüning et al., LHC Design Report, Vol. 1, CERN-2004-003-V-1 (2004).
14. E. Todesco and M. Giovannozzi, Dynamic aperture estimates and phase-space distor-

tions in nonlinear betatron motion, Phys. Rev. E 53, 4067 (1996).
15. M. Giovannozzi, W. Scandale, E. Todesco, Prediction of long-term stability in large

hadron colliders, Part. Accel. 56, 195 (1996).
16. M. Giovannozzi, W. Scandale, E. Todesco, Dynamic aperture extrapolation in pres-

ence of tune modulation, Phys. Rev. E 57, 3432 (1998).
17. M. Giovannozzi and E. McIntosh, Development of parallel codes for the study of

nonlinear beam dynamics, Int. Jou. Mod. Phys. C 8, 155 (1997).
18. C. L. Siegel and J. Moser, Lectures in celestial mechanics, Berlin Springer Verlag

(1971).
19. A. Bazzani, S. Marmi, G. Turchetti, Nekhoroshev estimate for isochronous non reso-

nant symplectic maps, Cel. Mech. 47, 333 (1990).
20. G. Turchetti, Nekhoroshev stability estimates for symplectic maps and physical ap-



December 14, 2017 11:52 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in DAandDiffusion page 15

15

plications, in Proceedings of Number Theory and Physics, edited by J. M. Luck,
P. Moussa, M. Waldschmidt, (Berlin Springer Verlag) Springer Proceedings in Physics,
V. 47, 223 (1990).

21. M. Giovannozzi, Proposed scaling law for intensity evolution in hadron storage rings
based on dynamic aperture variation with time, Phys. Rev. ST Accel. Beams 15,
024001 (2012).

22. G. Apollinari et al. (Eds.), High-Luminosity Large Hadron Collider (HL-LHC): Pre-
liminary Design Report, CERN-2015-005 (2015).

23. T. Collins et al., An Experimental Proposal to Use the Tevatron as an Aid to SSC
Design by Testing our Understanding of Effects Controlling Dynamic Aperture, in
Proceedings of the 1984 Snowmass workshop on Design and Utilization Of The Super-
conducting Super Collider, edited by R. Donaldson and J. G. Morfin, 361 (1984).

24. J. M. Peterson et al., Dynamic aperture measurements at the Tevatron, in Proceedings
of the 1988 European Particle Accelerator Conference, edited by S. Tazzari (World
Scientific, Singapore), 266 (1988).

25. W. Fischer, M. Giovannozzi, F. Schmidt, The Dynamic aperture experiment of the
CERN SPS, Phys. Rev. E55, 3507 (1997).

26. F. Willeke, Comparison of measured and calculated dynamic aperture, in Proceed-
ings of 1995 Particle Accelerator Conference, IEEE Service Center, Piscataway, 2747
(1996).

27. E. H. Maclean, R. Tomás, F. Schmidt, and T. H. B. Persson, Measurement of nonlinear
observables in the Large Hadron Collider using kicked beams, Phys. Rev. ST Accel.
Beams 17, 081002 (2014).

28. M. Albert et al., First Experimental observations from the LHC Dynamic Aperture
Experiment, in Proceedings of the Third International Particle Accelerator Conference,
edited by C. Eyberger and F. Zimmermann, 1362 (2012).

29. M. Giovannozzi et al., Experimental Observations from the LHC Dynamic Aperture
Machine Development Study in 2012, in Proceedings of the Fourth International Par-
ticle Accelerator Conference, edited by Z. Dai, C. Petit-Jean-Genaz, V. R. W. Schaa,
C. Zhang, 2606 (2013).

30. E. H. Maclean et al., in preparation.
31. M.F. Mestre, A. Bazzani, P.M. Cincotta, C.M. Giordano, Stochastic approach to

diffusion inside the chaotic layer of a resonance, Phys. Rev. E, 89, 012911 (2014).
32. J.A. Ellison, Accelerators and probability: The special effect of noise in beam dy-

namics, in Nonlinear and stochastic beam dynamics in accelerators DESY conference
proceedings, C97-09-29.3, 7 (1997).

33. A. Bazzani, S. Siboni, H. Mais, G. Turchetti, Diffusion in Hamiltonian systems with
a small stochastic perturbation, Physica D: Nonlinear Phenomena, 76, 8 (1994).

34. A. Bazzani, L. Beccaceci, L. Bigliardi, G. Turchetti, Fokker-Planck solutions for action
diffusion in a noisy symplectic map, AIP Conf. Proc. 395, 109 (1997).

35. H. Mais, M.P. Zorzano, Stochastic dynamics and Fokker-Planck equation in accelera-
tor physics, Il Nuovo Cimento A, 112-5, 467 (1999).

36. J.-A. Lázaro, C.J.-P. Ortega, Stochastic Hamiltonian dynamical systems, Reports on
Mathematical Physics, 61-1, 65 (2008).

37. R. Kubo, Stochastic Liouville Equations, Journal of Mathematical Physics, 4, 174
(1963).

38. G. Bassi, A. Bazzani, G. Turchetti, Stochastic continuity equation and related pro-
cesses, Physica A, 347, 17 (2005).

39. X.-M. Li, An averaging principle for a completely integrable stochastic Hamiltonian
system, Nonlinearity, 21, 803 (2008).



December 14, 2017 11:52 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in DAandDiffusion page 16

16

40. R. Cogburn and J.A. Ellison, A four-thirds law for phase randomization of stochasti-
cally perturbed oscillators and related phenomena, Comm. Math. Phys., 166-2, 317
(1994).


